skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ghosh, Aishik"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Neutron stars provide a unique opportunity to study strongly interacting matter under extreme density conditions. The intricacies of matter inside neutron stars and their equation of state are not directly visible, but determine bulk properties, such as mass and radius, which affect the star's thermal X-ray emissions. However, the telescope spectra of these emissions are also affected by the stellar distance, hydrogen column, and effective surface temperature, which are not always well-constrained. Uncertainties on these nuisance parameters must be accounted for when making a robust estimation of the equation of state. In this study, we develop a novel methodology that, for the first time, can infer the full posterior distribution of both the equation of state and nuisance parameters directly from telescope observations. This method relies on the use of neural likelihood estimation, in which normalizing flows use samples of simulated telescope data to learn the likelihood of the neutron star spectra as a function of these parameters, coupled with Hamiltonian Monte Carlo methods to efficiently sample from the corresponding posterior distribution. Our approach surpasses the accuracy of previous methods, improves the interpretability of the results by providing access to the full posterior distribution, and naturally scales to a growing number of neutron star observations expected in the coming years. 
    more » « less
  2. The interiors of neutron stars reach densities and temperatures beyond the limits of terrestrial experiments, providing vital laboratories for probing nuclear physics. While the star's interior is not directly observable, its pressure and density determine the star's macroscopic structure which affects the spectra observed in telescopes. The relationship between the observations and the internal state is complex and partially intractable, presenting difficulties for inference. Previous work has focused on the regression from stellar spectra of parameters describing the internal state. We demonstrate a calculation of the full likelihood of the internal state parameters given observations, accomplished by replacing intractable elements with machine learning models trained on samples of simulated stars. Our machine-learning-derived likelihood allows us to performmaximum a posterioriestimation of the parameters of interest, as well as full scans. We demonstrate the technique by inferring stellar mass and radius from an individual stellar spectrum, as well as equation of state parameters from a set of spectra. Our results are more precise than pure regression models, reducing the width of the parameter residuals by 11.8% in the most realistic scenario. The neural networks will be released as a tool for fast simulation of neutron star properties and observed spectra. 
    more » « less
  3. A comprehensive uncertainty estimation is vital for the precision program of the LHC. While experimental uncertainties are often described by stochastic processes and well-defined nuisance parameters, theoretical uncertainties lack such a description. We study uncertainty estimates for cross-section predictions based on scale variations across a large set of processes. We find patterns similar to a stochastic origin, with accurate uncertainties for processes mediated by the strong force, but a systematic underestimate for electroweak processes. We propose an improved scheme, based on the scale variation of reference processes, which reduces outliers in the mapping from leading order to next-to-leading-order in perturbation theory. 
    more » « less
  4. Abstract Neutron stars provide a unique laboratory for studying matter at extreme pressures and densities. While there is no direct way to explore their interior structure, X-rays emitted from these stars can indirectly provide clues to the equation of state (EOS) of the superdense nuclear matter through the inference of the star's mass and radius. However, inference of EOS directly from a star's X-ray spectra is extremely challenging and is complicated by systematic uncertainties. The current state of the art is to use simulation-based likelihoods in a piece-wise method which relies on certain theoretical assumptions and simplifications about the uncertainties. It first infers the star's mass and radius to reduce the dimensionality of the problem, and from those quantities infer the EOS. We demonstrate a series of enhancements to the state of the art, in terms of realistic uncertainty quantification and a path towards circumventing the need for theoretical assumptions to infer physical properties with machine learning. We also demonstrate novel inference of the EOS directly from the high-dimensional spectra of observed stars, avoiding the intermediate mass-radius step. Our network is conditioned on the sources of uncertainty of each star, allowing for natural and complete propagation of uncertainties to the EOS. 
    more » « less
  5. Abstract The semiconductor tracker (SCT) is one of the tracking systems for charged particles in the ATLAS detector. It consists of 4088 silicon strip sensor modules.During Run 2 (2015–2018) the Large Hadron Collider delivered an integrated luminosity of 156 fb -1 to the ATLAS experiment at a centre-of-mass proton-proton collision energy of 13 TeV. The instantaneous luminosity and pile-up conditions were far in excess of those assumed in the original design of the SCT detector.Due to improvements to the data acquisition system, the SCT operated stably throughout Run 2.It was available for 99.9% of the integrated luminosity and achieved a data-quality efficiency of 99.85%.Detailed studies have been made of the leakage current in SCT modules and the evolution of the full depletion voltage, which are used to study the impact of radiation damage to the modules. 
    more » « less